Part of Speech Tagging with Neural Architecture Search

Garrett Bingham
Yale University

New Haven, CT
garrett.bingham@yale.edu

Abstract

Recent neural architecture search techniques
have achieved state-of-the-art performance in
image classification and language modeling,
but applications to other machine learning
tasks have been lacking. We present the first
application of neural architecture search to
part of speech tagging. We adapt the DARTS
approach to neural architecture search (Liu
et al.,, 2018) to part of speech tagging and
achieve encouraging performance. We im-
prove this by introducing BiDARTS, a bidirec-
tional version of DARTS. BiDARTS consis-
tently outperforms DARTS and is competitive
with a state-of-the-art part of speech tagger.

1 Introduction

The success of a neural network frequently de-
pends on its architecture. Machine learning ex-
perts will often undergo significant trial and error
before finally designing an effective neural net-
work. This has inspired recent interest in devel-
oping techniques to automatically design effective
neural network architectures for a given task. For
a recent survey of neural architecture search, see
(Elsken et al., 2018b).

Reinforcement learning approaches treat the
neural architecture as the agent’s action, and an es-
timate of the architecture’s future performance as
the agent’s reward (Baker et al., 2016; Zoph and
Le, 2016; Zoph et al., 2017; Zhong et al., 2018).

Neuro-evolutionary methods, on the other hand,
use evolutionary algorithms to optimize the neu-
ral architecture, and utilize gradient-based meth-
ods to optimize an architecture’s weights (Liu
etal., 2017; Suganuma et al., 2017; Xie and Yuille,
2017; Real et al., 2017, 2018; Elsken et al., 2018a;
Miikkulainen et al., 2019). Evolutionary algo-
rithms evaluate a population of neural network ar-
chitectures. At each evolution step, architectures
are sampled to serve as parents. Mutations are

applied to the parent architectures to obtain off-
spring which are trained and evaluated before be-
ing added to the population.

Both reinforcement learning and neuro-
evolutionary approaches are computationally
expensive. For example, Zoph et al. (2017) re-
quired 1800 GPU days of reinforcement learning,
while Real et al. (2018) needed 3150 GPU days
of evolution. The DARTS approach uses a contin-
uous relaxation of the architecture representation
to search for effective architectures using gradient
descent in just one GPU day (Liu et al., 2018).
We choose DARTS over other neural architecture
search approaches because its low computational
cost allows us to perform more experiments.

Notable uses of neural architecture search on
new tasks include applications to music mod-
eling (Rawal and Miikkulainen, 2018), image
restoration (Suganuma et al., 2018), and network
compression (Ashok et al., 2017). Others have
considered using neural architecture search for
multi-task (Liang et al., 2018; Meyerson and Mi-
ikkulainen, 2018) and for multi-objective (Elsken
et al., 2018a; Dong et al., 2018; Zhou et al., 2018)
problems. To the best of our knowledge, neural
architecture search has yet to be applied to part
of speech tagging. We do so here, and hope that
this work will inspire future applications of neural
architecture search to important natural language
processing tasks.

2 Overview of DARTS

A DARTS recurrent cell is a directed acyclic graph
of N ordered nodes, where each node 2 is a la-
tent representation and each directed edge (i, 7)
corresponds to an operation 0(%:7) that transforms
2. A cell has two inputs: the input at the current
step and the hidden state from the previous step.
The output of the cell is obtained by concatenat-

(d)

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous relaxation of
the search space by placing a mixture of candidate operations on each edge. (c) Joint optimization of the mixing
probabilities and the network weights by solving a bilevel optimization problem. (d) Inducing the final architecture
from the learned mixing probabilities. (Liu et al., 2018)

Figure 2: Example DARTS recurrent cells. The left two cells were included in the publicly available DARTS code,
while the right two were randomly initialized.

ing all intermediate nodes, where each intermedi-
ate node is computed based on the previous nodes.

2 — Z 0(8) (£0)) (1)
j<i

Let O be the set of all operations. For DARTS
recurrent cells, O = {zero, tanh, relu, sigmoid,
identity }, where the zero operation indicates the
absence of an edge between two nodes. To make
the search space continuous, the choice of a par-
ticular operation is represented as a softmax over

all possible operations.

0€® ZO/GO exp (%/)

exp (ag’j))

o(z) (2)

The mixture of operations for an edge (,7) is
parameterized by the vector a®9) of dimension
|O|. The task of architecture search becomes a
task in learning the set of continuous variables
o = {a®))}. Discrete architectures are obtained
by replacing each mixed operation 6(*7) with the
most likely operation 0("/) = argmax, ., ol

Let L¢rqin be the training loss and L,,; be the
validation loss. DARTS attempts to find the ar-
chitecture o that minimizes the validation loss
Lyq(w*, o), where the weights w* associated
with the architecture minimize the training loss
w* = argmin,, Lirgin(w, a*). This corresponds
to the bilevel optimization problem:

mo%n Eval<w>k(a>v CE) 3)

s.t. w*(a) = argmin,, Liygin(w,) 4

It is expensive to solve the bilevel optimization
problem exactly, so DARTS compromises by al-
ternating gradient steps in the weights w and in
the architecture representation «. The weights
are optimized by descending in the direction
VwLirain(w,), while the architecture is opti-
mized by descending in the direction V o, Ly,q; (w —
EVwLirain(w,),), where is set equal to the
learning rate for the weights optimizer. This algo-
rithm does not necessarily converge, and as a re-
sult DARTS is sensitive to the initial random seed.

The process of searching for architectures is il-
lustrated in Figure 1. After the architecture search
phase is complete, the best performing architec-
ture is retrained from scratch. While DARTS is
capable of creating both convolutional and recur-
rent cells, we focus on recurrent cells in this paper.

Example DARTS recurrent cells are shown in Fig-
ure 2. For more details, see the DARTS paper (Liu
etal., 2018).

3 Experiments

We compare DARTS tagging accuracy with that
of jJPTDP (Nguyen and Verspoor, 2018), which
outperformed the state of the art on the bench-
mark English Penn treebank (Prasad et al., 2008).
jPTDP uses a two-layer bidirectional LSTM fol-
lowed by a MLP and a softmax layer to predict
part of speech tags. For fairness, we parse the
.conllu input files with code from jPTDP! and
feed this as input to DARTS.

We also introduce BiDARTS, a bidirectional
version of DARTS. To the best of our knowledge,
this is the first neural architecture search approach
that searches for bidirectional recurrent models. In
BiDARTS, we train a forward and reverse DARTS
model separately, and sum the outputs to get the
final prediction. It is possible to consider one ar-
chitecture for the forward model and a different ar-
chitecture for the reverse model, but we leave this
for future work

We apply DARTS, BiDARTS, and jPTDP to
part of speech tagging on Universal Dependencies
v2.2 treebanks.”> Among the results listed in the
jPTDP paper (Nguyen and Verspoor, 2018), we
consider the 60 treebanks for which there exist a
train, dev, and test .conllu file. For DARTS
and BiDARTS, we report the best accuracy among
the four architectures depicted in Figure 2. It is
possible that higher accuracy could be obtained by
searching for additional architectures or by con-
sidering DARTS cells with a different number of
intermediate nodes, but because of computational
cost, we do not do so here.

We train DARTS and BiDARTS for 50 epochs,
and leave all other parameters to their default val-
ues. This includes a batch size of 64 with learning
rate 17,, = 20 and weight decay 8 x 10~7. Embed-
ding and hidden sizes are set to 850, and BPTT
length is 35. DARTS also uses variational dropout
of 0.2 on word embeddings, 0.75 on the cell input,
0.25 on the hidden nodes, and 0.75 on the output
layer. These values were chosen for comparison
with previous neural architecture search papers.
The results from jPTDP are taken directly from

"https://github.com/datquocnguyen/
JPTDP
2http://universaldependencies.org

https://github.com/datquocnguyen/jPTDP
https://github.com/datquocnguyen/jPTDP
http://universaldependencies.org

Treebank DARTS | BiDARTS | jPTDP-c | jPTDP || Treebank DARTS | BiDARTS | jPTDP-c | jPTDP
Afrikaans-AfriBooms 91.95 93.54 94.58 95.73 || Indonesian-GSD 88.50 88.92 89.13 93.29
Ancient_Greek-Perseus 82.59 83.20 82.39 88.95 | Italian-ISDT 94.17 95.48 96.41 98.01
Ancient_Greek-PROIEL | 92.42 92.60 92.83 96.05 || Italian-PoSTWITA 90.46 91.86 92.15 95.41
Arabic-PADT 93.59 93.49 94.85 96.33 || Japanese-GSD 92.92 94.52 95.15 97.27
Basque-BDT 90.10 90.25 89.57 93.62 || Korean-GSD 83.16 84.91 83.93 93.35
Bulgarian-BTB 93.38 95.55 95.63 98.07 || Korean-Kaist 81.40 84.22 83.27 93.53
Catalan-AnCora 93.51 94.94 96.30 98.46 || Latin-ITTB 95.64 96.86 97.24 98.12
Chinese-GSD 88.00 89.26 91.18 93.26 || Latin-PROIEL 91.79 92.47 92.01 95.54
Croatian-SET 90.55 92.34 93.25 97.42 || Latvian-LVTB 85.67 87.46 86.49 93.53
Czech-CAC 93.61 94.35 95.31 98.87 || Norwegian-Bokmaal 90.85 93.21 95.07 97.73
Czech-FicTree 92.83 94.47 94.87 97.98 || Norwegian-Nynorsk 90.42 93.00 94.99 97.33
Czech-PDT 95.59 96.46 97.26 98.74 || Old_Church_Slavonic-PROIEL | 91.54 91.85 90.71 93.69
Danish-DDT 90.02 91.27 93.06 96.18 || Old_French-SRCMF 90.85 93.25 93.59 95.12
Dutch-Alpino 88.98 90.58 92.59 95.62 || Persian-Seraji 94.79 95.32 95.48 96.66
Dutch-LassySmall 89.66 91.20 91.41 95.21 || Polish-LFG 90.39 91.74 92.67 98.22
English-EWT 90.56 92.47 93.69 95.48 || Polish-SZ 86.58 88.70 89.57 97.05
English-GUM 86.23 87.79 88.67 94.10 || Portuguese-Bosque 91.10 93.39 94.16 96.76
English-LinES 89.98 92.33 92.54 95.55 || Romanian-RRT 93.48 94.46 95.00 97.43
Estonian-EDT 89.68 90.31 91.51 96.87 || Russian-SynTagRus 93.54 94.89 95.77 98.51
Finnish-FTB 83.54 87.03 86.25 94.53 || Serbian-SET 90.24 91.84 93.21 97.40
Finnish-TDT 88.93 89.43 89.24 96.12 || Slovak-SNK 80.37 81.94 83.11 95.18
French-GSD 93.84 94.87 96.08 97.11 || Slovenian-SSJ 88.30 91.05 92.60 97.79
French-Sequoia 93.90 94.40 95.94 97.92 || Spanish-AnCora 94.33 95.10 96.30 98.57
French-Spoken 89.09 89.35 90.14 94.25 || Swedish-Talbanken 90.10 92.99 93.81 96.55
Galician-CTG 93.62 94.82 95.45 97.12 || Turkish-IMST 87.05 88.49 86.94 92.93
German-GSD 87.60 90.10 91.47 94.07 || Ukrainian-IU 83.23 84.57 85.63 95.24
Gothic-PROIEL 92.05 92.89 91.98 93.45 || Urdu-UDTB 90.91 92.36 92.72 93.35
Greek-GDT 90.18 91.41 93.34 96.59 || Uyghur-UDT 83.78 87.52 84.93 87.63
Hebrew-HTB 92.41 93.63 94.31 96.24 || Vietnamese-VTB 88.12 88.04 86.68 87.63
Hindi-HDTB 94.45 95.55 95.97 96.94

Hungarian-Szeged 78.57 79.15 79.19 92.07 AVERAGE 89.92 91.32 91.83 95.63

Table 1: Part of speech tagging accuracy for DARTS (Liu et al., 2018), BIDARTS, and the state-of-the-art tagger
JPTDP (Nguyen and Verspoor, 2018) on Universal Dependencies v2.2 treebanks. jPTDP-c corresponds to jPTDP

without character embeddings.

the paper (Nguyen and Verspoor, 2018).

JPTDP takes both word and character embed-
dings as input. Since DARTS only accepts word
tokens as input, we also evaluate the performance
of jPTDP without character embeddings. This
provides a more fair comparison with DARTS. To
do so, we downloaded the publicly available code
for jPTDP, removed the character embeddings,
and trained a model on each treebank leaving all
parameters to their default values. We leave mod-
ifying DARTS to accept character embeddings to
future work.

4 Discussion

The results are summarized in Table 1. Notice
that BIDARTS outperforms DARTS in almost ev-
ery case. As the first bidirectional neural architec-
ture search approach, this is an important result.
It suggests that future neural architecture search
techniques should consider bidirectional recurrent
cells over unidirectional ones whenever feasible.
Although DARTS and BiDARTS are unable
to outperform jPTDP with character embeddings,
they still achieve satisfactory performance. Ad-
ditionally, the performance should be contrasted

with the amount of human effort required to design
the neural network architectures. While jPTDP
required significant time and human effort, the
DARTS and BiDARTS architectures were discov-
ered in one GPU day by executing a single com-
mand. This demonstrates that neural architecture
search approaches can be useful, especially when
the cost of human labor far outweighs the need for
state-of-the-art performance.

Notably, BiDARTS achieves comparable ac-
curacy with jJPTDP when character embeddings
are removed. This suggests that the presence
of the character embeddings was a principal fac-
tor in jJPTDP obtaining higher accuracy, and that
BiDARTS is effective at part of speech tagging.

5 Conclusion

We present the first application of neural architec-
ture search to part of speech tagging and introduce
BiDARTS, the first bidirectional neural architec-
ture search approach. BiDARTS is competitive
with a state-of-the-art part of speech tagger. Fu-
ture work will include applying BiDARTS to new
machine learning tasks.

References

Anubhav Ashok, Nicholas Rhinehart, Fares Beainy,
and Kris M Kitani. 2017. N2n learning: network to
network compression via policy gradient reinforce-
ment learning. arXiv preprint arXiv:1709.06030.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. 2016. Designing neural network architec-
tures using reinforcement learning. arXiv preprint
arXiv:1611.02167.

Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan,
Wei Wei, and Min Sun. 2018. Dpp-net: Device-
aware progressive search for pareto-optimal neural
architectures. arXiv preprint arXiv:1806.08198.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hut-
ter. 2018a. Efficient multi-objective neural architec-
ture search via lamarckian evolution. arXiv preprint
arXiv:1804.09081.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hut-
ter. 2018b. Neural architecture search: A survey.
arXiv preprint arXiv:1808.05377.

Jason Liang, Elliot Meyerson, and Risto Miikku-
lainen. 2018. Evolutionary architecture search
for deep multitask networks. arXiv preprint
arXiv:1803.03745.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisan-
tha Fernando, and Koray Kavukcuoglu. 2017. Hi-
erarchical representations for efficient architecture
search. arXiv preprint arXiv:1711.00436.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2018. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055.

Elliot Meyerson and Risto Miikkulainen. 2018.
Pseudo-task augmentation: From deep multitask
learning to intratask sharing—and back. arXiv
preprint arXiv:1803.04062.

Risto Miikkulainen, Jason Liang, Elliot Meyerson,
Aditya Rawal, Daniel Fink, Olivier Francon, Bala
Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel
Duffy, et al. 2019. Evolving deep neural networks.
In Artificial Intelligence in the Age of Neural Net-
works and Brain Computing, pages 293-312. Else-
vier.

Dat Quoc Nguyen and Karin Verspoor. 2018. An
improved neural network model for joint pos tag-
ging and dependency parsing. arXiv preprint
arXiv:1807.03955.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bon-
nie L Webber. 2008. The penn discourse treebank
2.0. In LREC. Citeseer.

Aditya Rawal and Risto Miikkulainen. 2018. From
nodes to networks: Evolving recurrent neural net-
works. arXiv preprint arXiv:1803.04439.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. 2018. Regularized evolution for im-
age classifier architecture search. arXiv preprint
arXiv:1802.01548.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh
Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le,
and Alexey Kurakin. 2017. Large-scale evolution
of image classifiers. In International Conference on
Machine Learning, pages 2902-2911.

Masanori Suganuma, Mete Ozay, and Takayuki
Okatani. 2018. Exploiting the potential of stan-
dard convolutional autoencoders for image restora-
tion by evolutionary search. arXiv preprint
arXiv:1803.00370.

Masanori Suganuma, Shinichi Shirakawa, and Tomo-
haru Nagao. 2017. A genetic programming ap-
proach to designing convolutional neural network
architectures. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 497—
504. ACM.

Lingxi Xie and Alan Yuille. 2017. Genetic cnn. In
2017 IEEE International Conference on Computer
Vision (ICCV), pages 1388—1397. IEEE.

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and
Cheng-Lin Liu. 2018. Practical block-wise neural
network architecture generation. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2423-2432.

Yanqgi Zhou, Siavash Ebrahimi, Sercan O Arik, Hao-
nan Yu, Hairong Liu, and Greg Diamos. 2018.
Resource-efficient neural architect. arXiv preprint
arXiv:1806.07912.

Barret Zoph and Quoc V Le. 2016. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. 2017. Learning transferable architec-
tures for scalable image recognition. arXiv preprint
arXiv:1707.07012, 2(6).

