Ineffectiveness of Gradient-based Neural Architecture Search

Garrett Bingham
Yale University

New Haven, CT
garrett.bingham@yale.edu

Abstract

Neural architecture search aims to automati-
cally discover an effective neural network ar-
chitecture for a given task. While most ap-
proaches to neural architecture search utilize
reinforcement learning or neuro-evolutionary
methods, DARTS (Liu et al., 2018) uses a con-
tinuous relaxation of the architecture represen-
tation to search for architectures using gradi-
ent descent. By training language models on
Penn treebank, we demonstrate that gradient
descent explores the search space ineffectively,
and find that randomly initialized architectures
are often able to outperform those discovered
after extensive searching. We argue that gra-
dient descent simply serves as a proxy for ar-
bitrarily modifying the architecture, and show
that gradient descent does not discover more
capable architectures with each iteration of ar-
chitecture search. These findings underscore
the need for future neural architecture search
approaches to be evaluated against more con-
crete baselines.

1 Introduction

The success of a neural network frequently de-
pends on its architecture. Machine learning ex-
perts will often undergo significant trial and error
before finally designing an effective neural net-
work. This has inspired recent interest in devel-
oping techniques to automatically design effective
neural network architectures for a given task. For
a recent survey of neural architecture search, see
(Elsken et al., 2018b).

Reinforcement learning approaches treat the
neural architecture as the agent’s action, and an es-
timate of the architecture’s future performance as
the agent’s reward (Baker et al., 2016; Zoph and
Le, 2016; Zoph et al., 2017; Zhong et al., 2018).

Neuro-evolutionary methods, on the other hand,
use evolutionary algorithms to optimize the neu-
ral architecture, and utilize gradient-based meth-

ods to optimize an architecture’s weights (Liu
etal., 2017; Suganuma et al., 2017; Xie and Yuille,
2017; Real et al., 2017, 2018; Elsken et al., 2018a;
Miikkulainen et al., 2019). Evolutionary algo-
rithms evaluate a population of neural network ar-
chitectures. At each evolution step, architectures
are sampled to serve as parents. Mutations are
applied to the parent architectures to obtain off-
spring which are trained and evaluated before be-
ing added to the population.

DARTS differs from the majority of neural
architecture search approaches by using a con-
tinuous relaxation of the architecture represen-
tation to search for architectures using gradi-
ent descent. Reinforcement learning and neuro-
evolutionary approaches are computationally ex-
pensive, and gradient descent offers a cheaper al-
ternative. However, we show that gradient de-
scent explores the search space ineffectively, and
find that randomly initialized architectures are of-
ten able to outperform those discovered after ex-
tensive searching.

2 Overview of DARTS

A DARTS recurrent cell is a directed acyclic graph
of N ordered nodes, where each node z(*) is a la-
tent representation and each directed edge (i, 7)
corresponds to an operation o(*7) that transforms
2. A cell has two inputs: the input at the current
step and the hidden state from the previous step.
The output of the cell is obtained by concatenat-
ing all intermediate nodes, where each intermedi-
ate node is computed based on the previous nodes.

20 = ZO(iJ) (z) (1)
j<i
Let O be the set of all operations. For DARTS

recurrent cells, @ = {zero, tanh, relu, sigmoid,
identity }, where the zero operation indicates the

(d)

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous relaxation of
the search space by placing a mixture of candidate operations on each edge. (c) Joint optimization of the mixing
probabilities and the network weights by solving a bilevel optimization problem. (d) Inducing the final architecture
from the learned mixing probabilities. (Liu et al., 2018)

Figure 2: Example DARTS recurrent cells. The left two cells were included in the publicly available DARTS code,
while the right two were randomly initialized.

absence of an edge between two nodes. To make
the search space continuous, the choice of a par-
ticular operation is represented as a softmax over
all possible operations.

o) (z) = Z

5 Y eoexp (@l

exp (@

ofz) ()

The mixture of operations for an edge (,7) is
parameterized by the vector a®9) of dimension
|O|. The task of architecture search becomes a
task in learning the set of continuous variables
o = {a®))}. Discrete architectures are obtained
by replacing each mixed operation o) with the
most likely operation 0("/) = argmax, ., ol

Let Lrqin be the training loss and L,,; be the
validation loss. DARTS attempts to find the ar-
chitecture o that minimizes the validation loss
Lyq(w*, o*), where the weights w* associated
with the architecture minimize the training loss
w* = argmin,, Lipqin(w, a™). This corresponds
to the bilevel optimization problem:

min ‘Cval(w*(a)a a) (3)
s.t. w*(a) = argmin,, Lirqin(w, @))

It is expensive to solve the bilevel optimization
problem exactly, so DARTS compromises by al-
ternating gradient steps in the weights w and in
the architecture representation «. The weights
are optimized by descending in the direction
VwLirain(w,), while the architecture is opti-
mized by descending in the direction V o, Ly,q; (w —
EVwLirain(w,),), where is set equal to the
learning rate for the weights optimizer. This algo-
rithm does not necessarily converge, and as a re-
sult DARTS is sensitive to the initial random seed.

The process of searching for architectures is il-
lustrated in Figure 1. After the architecture search
phase is complete, the best performing architec-
ture is retrained from scratch. While DARTS is
capable of creating both convolutional and recur-
rent cells, we focus on recurrent cells in this paper.
Example DARTS recurrent cells are shown in Fig-
ure 2. For more details, see the DARTS paper (Liu
et al., 2018).

3 Experiments

3.1 Original DARTS Results

DARTS operates in two phases: the architecture
search phase and the training phase. During the

architecture search phase, DARTS alternates be-
tween taking gradient steps in the architecture rep-
resentation o and gradient steps in the weights w
of the architecture itself. After the architecture
search phase is complete, the resulting architecture
is trained completely from scratch in the training
phase.

Liu et al. (2018) attempt to show that DARTS
discovers increasingly capable architectures. They
do so by fully training the architectures discovered
after 0, 1, 2, 3, and 4 GPU hours of architecture
search, and showing that the perplexity for lan-
guage modeling on Penn treebank decreases over
time (lower perplexity is better). Five data points,
however, is unconvincing, and for some initial ran-
dom seeds we found perplexity to increase with
time. A more thorough experiment would demon-
strate improvement by fully training the current ar-
chitecture at every epoch of architecture search.

The DARTS authors also claim that architec-
ture search by gradient descent outperforms a ran-
domly initialized architecture. However, we argue
that pitting the several dozen architectures con-
sidered during architecture search against a single
randomly initialized architecture is not a fair com-
parison. A more appropriate experiment would
consider one random architecture for each epoch
of architecture search.

3.2 Our Experiment

To investigate whether gradient descent is capa-
ble of discovering increasingly better architec-
tures, we run DARTS architecture search for 50
epochs. At each epoch of architecture search, we
have a different architecture that DARTS predicts
to be the most capable architecture discovered so
far. This architecture represents the architecture
we would use if the search process were stopped
at that time. We train all 50 architectures from
scratch for 100 epochs, and report test set per-
plexity for language modeling on Penn treebank.
We also randomly initialize 50 architectures us-
ing random seeds 0-49. Each architecture is simi-
larly trained for 100 epochs and compared against
those discovered through architecture search. The
results are summarized in Figure 3.

3.3 Discussion

We can draw a number of conclusions from the
charts in Figure 3. First, it is evident that gra-
dient descent is ineffective at discovering better
DARTS architectures. The test perplexity of the

DARTS Architecture Search

Random Architectures

Performance Over Time Summary

76 76 76| — DARTS: Best So Far 76 ("]
-------- DARTS: Avg. So Far ®
Random: Best So Far
74 74 74 Random: Avg. So Far 74
2 8
5)
272 72 721 i 72| @
a ! T
5 70 70 70 —\ 70 é
[l
68 68 68 68
66 0 10 20 30 40 50 66 0 10 20 30 40 50 66 0 10 20 30 40 50 66 DARTS Random
Architecture Search Epoch Random Seed Epoch
(a) (b) (c) (d)

Figure 3: DARTS architecture search by gradient descent is compared with randomly initialized architectures.
(a) DARTS architecture search is run for 50 epochs. At each epoch, the current architecture is trained from
scratch on Penn treebank and test perplexity is reported (lower is better). (b) Fifty architectures are randomly
initialized using random seeds 0-49. Each architecture is similarly trained on Penn treebank. (¢) The performance
of gradient-based architecture search against random architectures is compared. “Best So Far” represents the best
performing architecture discovered up to that time, while “Avg. So Far” reports the average test perplexity among
all architectures up to that time step. (d) The performances of all architectures discovered through architecture

search and by random initialization are summarized.

architectures does not decrease over time. Even
after 50 architecture search epochs (roughly 5.5
GPU hours), the resulting architecture is not sig-
nificantly better than the initial architecture before
searching began.

Second, we see many places in chart (a) of Fig-
ure 3 where the test perplexity does not change
across several epochs. This is because gradient de-
scent is stuck at a single architecture. This leads us
to conclude that gradient descent, as currently im-
plemented in DARTS, does not explore enough of
the architecture space.

Third, random architectures are surprisingly ef-
fective. Of the 50 random architectures, 22 of
them are better than the best architecture across all
50 epochs of gradient-based architecture search.

5.5 GPU hours of architecture search results in
an architecture that performs reasonably well. On
the other hand, architectures can be randomly ini-
tialized in seconds or less, and as we show here,
chances are one of them will outperform the best
architecture discovered via searching. We do not
necessarily advocate for using random architec-
tures in practice. Instead, we consider random ar-
chitectures a reasonable baseline that any neural
architecture search algorithm ought to outperform.
Unfortunately, DARTS with gradient descent does
not meet this criteria.

The benefit of gradient descent over reinforce-

ment learning or neuro-evolution is that it is con-
siderably less expensive. To improve DARTS, one
might consider running multiple searches in par-
allel in order to explore more of the architecture
space. Another strategy could involve triggering
random restarts any time the search becomes stuck
at a single architecture for multiple epochs.

4 Conclusion

Surprisingly, we find that gradient descent is easily
outperformed by architecture search through ran-
dom initialization. Our results imply that gradi-
ent descent does not explore enough of the archi-
tecture search space and often becomes stuck at
a single architecture for many iterations. Further-
more, we do not find convincing evidence that gra-
dient descent discovers more capable architectures
with each iteration of architecture search. Rather,
it appears that gradient descent simply serves as a
proxy for arbitrarily modifying the architecture.

Our findings lead us to argue for stronger ver-
ification of future neural architecture search tech-
niques. Any neural architecture search approach
should be able to demonstrate that it progressively
discovers more capable architectures throughout
the architecture search process and that the archi-
tecture search strategy outperforms some mean-
ingful baseline (such as randomly initialized archi-
tectures).

References

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. 2016. Designing neural network architec-
tures using reinforcement learning. arXiv preprint
arXiv:1611.02167.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hut-
ter. 2018a. Efficient multi-objective neural architec-
ture search via lamarckian evolution. arXiv preprint
arXiv:1804.09081.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hut-
ter. 2018b. Neural architecture search: A survey.
arXiv preprint arXiv:1808.05377.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisan-
tha Fernando, and Koray Kavukcuoglu. 2017. Hi-
erarchical representations for efficient architecture
search. arXiv preprint arXiv:1711.00436.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2018. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055.

Risto Miikkulainen, Jason Liang, Elliot Meyerson,
Aditya Rawal, Daniel Fink, Olivier Francon, Bala
Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel
Duffy, et al. 2019. Evolving deep neural networks.
In Artificial Intelligence in the Age of Neural Net-
works and Brain Computing, pages 293-312. Else-
vier.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. 2018. Regularized evolution for im-
age classifier architecture search. arXiv preprint
arXiv:1802.01548.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh
Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le,
and Alexey Kurakin. 2017. Large-scale evolution
of image classifiers. In International Conference on
Machine Learning, pages 2902-2911.

Masanori Suganuma, Shinichi Shirakawa, and Tomo-
haru Nagao. 2017. A genetic programming ap-
proach to designing convolutional neural network
architectures. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 497—
504. ACM.

Lingxi Xie and Alan Yuille. 2017. Genetic cnn. In
2017 IEEE International Conference on Computer
Vision (ICCV), pages 1388—1397. IEEE.

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and
Cheng-Lin Liu. 2018. Practical block-wise neural
network architecture generation. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2423-2432.

Barret Zoph and Quoc V Le. 2016. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. 2017. Learning transferable architec-
tures for scalable image recognition. arXiv preprint
arXiv:1707.07012, 2(6).

