Garrett Bingham

garrettbingham.com garrett@gjb.ai +1 385.205.1925 linkedin.com/in/garrettbingham github.com/garrettbingham Last Updated: February 11, 2024

EDUCATION

The University of Texas at Austin

Ph.D., Department of Computer Science

Austin, TX · 2019 - 2023 Advisor: Risto Miikkulainen

Yale University

B.S., Computer Science & Mathematics, cum laude

New Haven, CT · 2015 - 2019

RESEARCH AND WORK EXPERIENCE

Google DeepMind

Research Scientist Curated datasets used to train Gemini models. Mountain View, CA · Oct 2023 - Present

Cognizant AI Labs

Machine Learning Researcher

San Francisco, CA · May 2020 - Oct 2023

- Developed AQuaSurF, a technique for efficient activation function optimization through surrogate modeling.
- · Fisher eigenvalues and function outputs are used to accurately predict performance, accelerating search for better activation functions.
- · AQuaSurF is orders of magnitude more efficient than comparable methods and scales up to large datasets like ImageNet.
- Developed AutoInit, an approach for analytic signal-preserving weight initialization for neural networks.
- · AutoInit improves performance of convolutional, residual, and transformer networks across a range of activation function, dropout, weight decay, learning rate, and normalizer settings.
- · In neural architecture search and activation function discovery, AutoInit automatically calculates specialized weight initialization strategies for thousands of unique architectures and hundreds of unique activation functions.
- AutoInit improves performance in vision, language, tabular, multi-task, and transfer learning scenarios.

Neural Networks Research Group

Austin, TX · Aug 2019 - May 2023

Graduate Research Assistant

- Developed PANGAEA, a process combining evolutionary and gradient-based optimization to design deep network activation functions.
- · Activation functions discovered by PANGAEA give statistically significant increases in performance over 31 baseline functions.
- Demonstrated that evolutionary algorithms can design novel deep learning activation functions that outperform ReLU.
- Replacing ReLU with an evolved activation function in Wide ResNet gives a statistically significant increase in accuracy on CIFAR-100.
- Showed that an evolutionary algorithm discovers better activation functions more quickly than random search.

Amazon Robotics AI

Seattle, WA · May - Aug 2019

Software Development Engineer Intern

- Migrated production large-scale video classification workflow to internal computation framework, optimizing for specific use cases.
- Parallelized 10 TB dataset construction and preprocessing; used cached results from prior datasets to incrementally build new ones.
- · Created model versioning scheme to allow framework to substitute precomputed per-epoch results instead of requiring two weeks of retraining for every experiment.
- · Assisted visiting scientists with onboarding and added GPU support to the framework.

Language, Information, and Learning at Yale (LILY) Lab

New Haven, CT · Aug 2018 - May 2019

Natural Language Processing Researcher

- Developed BiDARTS, a novel approach to automatically design bidirectional recurrent neural network architectures.
- BiDARTS approached state-of-the-art accuracy on word token part of speech tagging across 60 treebanks (91.32% vs. 91.83%).

- · Empirically demonstrated that random search outperforms current gradient-based approaches to neural network architecture design.
- Improved English-Swahili and English-Tagalog cross-lingual document retrieval relevance scores by 5.2% by training support vector regressor to predict query-specific document cutoffs. Research done for IARPA MATERIAL Program.

Reservoir Labs

New York, NY · Jun - Aug 2018

Machine Learning Engineer Intern

- · Utilized polyhedral compiler to speed up neural network inference time by 12% without sacrificing accuracy.
- Implemented methods to translate TensorFlow operations to equivalent \dot{C} code, increasing percentage of optimizable operations from 84% to 99% for Inception V₃/V₄ and from 58% to 95% for ResNet V₂ 50.
- · Designed algorithm to optimize disjoint subgraphs of the neural network, decreasing optimization time to less than one minute.
- · Improved robustness by developing algorithms that guarantee the optimized neural network remains acyclic.

University of North Carolina Wilmington

Wilmington, NC · May - Jul 2017

NSF Research Experience for Undergraduates Intern

- Developed novel face recognition algorithm which classifies by weighting predictions made in multiple random feature subspaces.
- Improved accuracy from 60.9% to 78.8% on MORPH-II and from 90.3% to 94.8% on ORL datasets vs. related algorithms.
- Corrected 2,700 errors in the 55,000 entry MORPH-II face image dataset that previously published research missed.

PUBLICATIONS

Journal Articles

I. G. Bingham and R. Miikkulainen. Discovering Parametric Activation Functions. Neural Networks, 2022

Refereed Conference Papers

- 2. G. Bingham and R. Miikkulainen. Efficient Activation Function Optimization through Surrogate Modeling. *Advances in Neural Information Processing Systems (NeurIPS)*, 2023
- 3. G. Bingham and R. Miikkulainen. AutoInit: Analytic Signal-Preserving Weight Initialization for Neural Networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, 2023
- 4. G. Bingham, W. Macke, and R. Miikkulainen. Evolutionary Optimization of Deep Learning Activation Functions. In *Genetic and Evolutionary Computation Conference (GECCO '20), July 8–12, 2020, Cancún, Mexico*, 2020
- 5. R. Zhang, C. Westerfield, S. Shim, G. Bingham, A. R. Fabbri, W. Hu, N. Verma, and D. Radev. Improving Low-Resource Cross-Lingual Document Retrieval by Reranking with Deep Bilingual Representations. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 3173–3179, 2019
- 6. B. Yip, G. Bingham, K. Kempfert, J. Fabish, T. Kling, C. Chen, and Y. Wang. Preliminary Studies on a Large Face Database. In *2018 IEEE International Conference on Big Data (Big Data)*, pages 2572–2579. IEEE, 2018

Technical Reports

- 7. G. Bingham. Optimizing Neural Networks through Activation Function Discovery and Automatic Weight Initialization. *Ph.D. Dissertation*, 2023
- 8. G. Bingham. Part of Speech Tagging with Neural Architecture Search. Yale University Senior Project, 2019
- 9. G. Bingham. Random Subspace Two-Dimensional LDA for Face Recognition. arXiv:1711.00575, 2017
- 10. G. Bingham, B. Yip, M. Ferguson, C. Nansalo, C. Chen, Y. Wang, and T. Kling. MORPH-II: Inconsistencies and Cleaning. *University of North Carolina Wilmington NSF REU*, 2017

PRESENTATIONS

Oral Presentations

- II. G. Bingham. Optimizing Neural Networks through Activation Function Discovery and Automatic Weight Initialization. Ph.D. Dissertation Defense. The University of Texas at Austin. Austin, TX. April 3, 2023
- 12. G. Bingham. AutoInit: Analytic Signal-Preserving Weight Initialization for Neural Networks. AAAI 2023. Washington, DC. February 7-14, 2023
- 13. G. Bingham. Automated Activation Function Design with Evolutionary Computation. Ph.D. Proposal. The University of Texas at Austin. Austin, TX. December 1, 2020
- 14. G. Bingham. Evolutionary Optimization of Deep Learning Activation Functions. BEACON Congress. August 12-14, 2020
- 15. G. Bingham. Evolutionary Optimization of Deep Learning Activation Functions. GECCO 2020. Cancún, Mexico. July 8-12, 2020
- 16. G. Bingham. Evolutionary Optimization of Deep Learning Activation Functions. Ph.D. Research Preparation Exam. The University of Texas at Austin. Austin, TX. April 21, 2020
- 17. G. Bingham. Random Subspace Two-Dimensional LDA for Face Recognition. NES Mathematical Association of America Meeting. Sacred Heart University. Fairfield, CT. November 17-18, 2017

Poster Presentations

- 18. G. Bingham. Efficient Activation Function Optimization through Surrogate Modeling. NeurIPS 2023. New Orleans, LA. December 10-16, 2023
- 19. G. Bingham. AutoInit: Analytic Signal-Preserving Weight Initialization for Neural Networks. AAAI 2023. Washington, DC. February 7-14, 2023
- 20. G. Bingham. Random Subspace Two-Dimensional LDA for Face Recognition. Council on Undergraduate Research REU Symposium. The Westin Alexandria. Alexandria, VA. October 22-23, 2017
- 21. G. Bingham. Random Subspace Two-Dimensional LDA for Face Recognition. REU Research Showcase. The University of North Carolina Wilmington. Wilmington, NC. July 24, 2017

PATENTS

- 22. G. Bingham and R. Miikkulainen. System and method for evaluating weight initialization for neural network models, Mar. 23 2023. US Patent App. 17/855,955
- 23. G. Bingham and R. Miikkulainen. System and method for generating parametric activation functions, Feb. 17 2022. US Patent App. 17/399,470
- 24. One patent pending

SOFTWARE

- 25. G. Bingham. AQuaSurF. https://github.com/cognizant-ai-labs/aquasurf, 2023
- 26. G. Bingham. Act-Bench. https://github.com/cognizant-ai-labs/act-bench, 2023
- 27. G. Bingham et al. AutoInit. https://github.com/cognizant-ai-labs/autoinit, 2021

REVIEWING

Journals

- ACM Journal on Emerging Technologies in Computing Systems
- IEEE Transactions on Evolutionary Computation
- Nature Machine Intelligence

Conferences

- AAAI (Association for the Advancement of Artificial Intelligence) 2023
- GECCO (Genetic and Evolutionary Computation Conference) 2021, 2022
- ICML (International Conference on Machine Learning) 2022, 2023
- NeurIPS (Neural Information Processing Systems) 2022

AWARDS

University Graduate Continuing Fellowship, The University of Texas at Austin, 2021 - 2022, \$44,000. (declined)